

Cyber-Insurance Revisited

Workshop on the Economics of Information Security Kennedy School of Government · Harvard University 03 June 2005

Rainer Böhme rainer.boehme@inf.tu-dresden.de

Department of Computer Science Institute for System Architecture 01062 Dresden, Germany

Participation in this workshop was kindly supported by a stipend from the Institute for Information Infrastructure Protection.

Literature review

Why cyber-insurance is a good idea to tackle IT security risks

Incentives \cdot Market situation \cdot Theories

Contribution of this paper

Explaining immature supply of cyber-insurance with concentration in relevant equipment markets

Model · Results · Interpretation

Subjective rationality

Transfer of risk

Exchange of uncertain future costs to fixed expenses at present

Manageability

Constant liquidity prevents undue shortages and crises

Quantification

Premiums form a metric for the value (≠cost) of security strength

Substantial rationality

Incentives to innovate

More secure technologies pay off in lower premiums Buzzword: Total cost of ownership

Incentives to implement

effective security measures in reasonable scope

Infosec R&D Evaluation and code reviews, information sharing

Ref.: Anderson 1994, Varian 2000, Kesan et al. 2004, Schneier 2004, a.o.

4

5

Thesis 1:	 Liability unsolved Losses occur nevertheless: instead of the originator, the aggrieved party could demand coverage
Thesis 2:	"New risks" lack actuarial data Early satellite starts got coverage as well
Thesis 3:	High probability of loss You can even insure warships at wartime
Thesis 4:	 Difficulty to substantiate claims Probably – can be interpreted as combination of residual juridical risk together with high transaction costs
Thesis 5:	Cyber-risks are accumulation risks Market concentration causes correlation of claims

Network externalities

Utility of a system increases with its market share, i.e., with the number of users of compatible devices (Metcalfe's law)

Negligible marginal costs

Low costs for additional output (e.g., copy of a software CD) enables strategic pricing and fosters predatory competition

Dependencies in complementary markets

Third-party vendors of supplementary products first support the dominant platform and thus contribute to increase its attraction

Links to relevant literature

Varian 2000, Anderson 2001, and others

Implications of Market Structure

CYBER-INSURANCE REVISITED

Explaining immature supply of cyber-insurance with concentration in equipment markets

Model · Results · Interpretation

Portfolio of *n* independent Bernoulli-risks with probability of loss *p*. Expected total claim amount E(L) follows a Binomial distribution B(n,p).

Premium must comprise additional <u>safety loading</u> to finance safety capital c, so that the <u>probability of ruin</u> of the insurance company keeps below a defined upper bound ε .

CYBER-INSURANCE REVISITED

Single-Factor-Model

depending on p, n, and ρ .

Upper bounds for correlation of claims ρ

		Risk aversion of insurance holder						
		moderate (o=1)			str	ong ($\sigma=$	3)	
Risk <i>p</i>	$I_0 =$	0.2	1.0	5.0	0.2	1.0	5.0	
0.01		0.11	0.04	0.01	1.00	0.20	0.03	
0.05		0.55	0.19	0.05	1.00	0.89	0.16	
0.10		1.00	0.37	0.09	1.00	1.00	0.31	
0.20		1.00	0.73	0.18	1.Q0	1.00	0.60	

No problem

- \cdot Coverage for perils with high probability of loss
- High risk averse individuals

Problem

"Small policies" against unlikely losses

These are the mass market products that could deliver liquidity and volume to form a mature market for cyber-insurance

Comparison of two example platforms ...

Dominant platform \mathcal{D}

- Total probability of loss p
- Large portfolio size $(n \rightarrow \infty)$
- Correlation of losses $\rho > 0$

Alternative platform \mathcal{A}

- Total probability of loss p
- Finite portfolio size n
- No correlation of losses (plausible for virus contagion)

Premiums for Dominant and Alternative Platform

CYBER-INSURANCE REVISITED

Conditional Advantage of Diversification

Portfolio size of alternative platform n

Comparison of two example platforms ...

Dominant platform \mathcal{D}

- Total probability of loss p
- Large portfolio size $(n \rightarrow \infty)$
- Correlation of losses $\rho > 0$

Alternative platform \mathcal{A}

- Total probability of loss p
- Finite portfolio size n
- No correlation of losses (plausible for virus contagion)

Result:

A minimum portfolio size of \mathcal{A} is required before insurance premiums fall below the level of \mathcal{D} .

Market entry barrier

Frame:

Favorable economic effects

Cyber-insurance moderates IT security investment, reduces residual risk, and creates incentives for R&D.

Thesis 1:

Shortage of supply due to market structure

Though demand for cyber-insurance exists, a monoculture of installed systems may thwart a market equilibrium.

Thesis 2:

Reciprocity of interventions

Since market structure in the equipment market and conditions for cyber-insurance are linked, regulatory policies supporting cyber-insurance might cause a shift in market shares. **Can Premiums Steal the Thunder of Market Power?**

Supply-side model

- Naive selection of Bernoulli risks
- Measure of dependence (correlation) unrealistic
- Individual risk approach hinders empirical substantiation

Demand-side model

- Partial coverage not regarded
- Restricted to one class of utility functions (CRRA)
- Difficulty to quantify losses left out

Comparison of platforms

- Market position is likely to influence total probability of loss
- Inclusion of transaction and monitoring costs might reveal advantages for the market leader (Metcalfe ... again!)

• Further interdisciplinary research needed

"A trusted component or system is one which you can insure."

Ross Anderson, ESORICS 1994

Rainer Böhme Institute for System Architecture rainer.boehme@inf.tu-dresden.de

Thanks for your attention.